749 research outputs found

    Foerster resonance energy transfer rate and local density of optical states are uncorrelated in any dielectric nanophotonic medium

    Get PDF
    Motivated by the ongoing debate about nanophotonic control of Foerster resonance energy transfer (FRET), notably by the local density of optical states (LDOS), we study an analytic model system wherein a pair of ideal dipole emitters - donor and acceptor - exhibit energy transfer in the vicinity of an ideal mirror. The FRET rate is controlled by the mirror up to distances comparable to the donor-acceptor distance, that is, the few-nanometer range. For vanishing distance, we find a complete inhibition or a four-fold enhancement, depending on dipole orientation. For mirror distances on the wavelength scale, where the well-known `Drexhage' modification of the spontaneous-emission rate occurs, the FRET rate is constant. Hence there is no correlation between the Foerster (or total) energy transfer rate and the LDOS. At any distance to the mirror, the total energy transfer between a closely-spaced donor and acceptor is dominated by Foerster transfer, i.e., by the static dipole-dipole interaction that yields the characteristic inverse-sixth-power donor-acceptor distance dependence in homogeneous media. Generalizing to arbitrary inhomogeneous media with weak dispersion and weak absorption in the frequency overlap range of donor and acceptor, we derive two main theoretical results. Firstly, the spatially dependent Foerster energy transfer rate does not depend on frequency, hence not on the LDOS. Secondly the FRET rate is expressed as a frequency integral of the imaginary part of the Green function. This leads to an approximate FRET rate in terms of the LDOS integrated over a huge bandwidth from zero frequency to about 10 times the donor emission frequency, corresponding to the vacuum-ultraviolet. Even then, the broadband LDOS hardly contributes to the energy transfer rates. We discuss practical consequences including quantum information processing.Comment: 17 pages, 9 figure

    Light propagation and emission in complex photonic media

    Get PDF
    We provide an introduction to complex photonic media, that is, composite materials with spatial inhomogeneities that are distributed over length scales comparable to or smaller than the wavelength of light. This blossoming field is firmly rooted in condensed matter physics, in optics, and in materials science. Many stimulating analogies exist with other wave phenomena such as sound and seismology, X-rays, neutrons. The field has a rich history, which has led to many applications in lighting, novel lasers, light harvesting, microscopy, and bio optics. We provide a brief overview of complex photonic media with different classes of spatial order, varying from completely random to long-periodically ordered structures, quasi crystalline and aperiodic structures, and arrays of cavities. In addition to shaping optical waves by suitable photonic nanostructures, the realization is quickly arising that the spatial shaping of optical wavefronts with spatial light modulators dramatically increases the number of control parameters. As a result, it is becoming possible for instance to literally see through completely opaque complex media. We discuss a unified view of complex photonic media by means of a photonic interaction strength parameter. This parameter gauges the interaction of light with any complex photonic medium, and allows to compare complex media from different classes for similar applications.Comment: 8 pages, 2 figures, Light Localisation and Lasing: Random and Quasi-Random Photonic Structures, Eds. M. Ghulinyan and L. Pavesi, (Cambridge Univ. Press, Cambridge, 2015) Ch. 1, p.

    Optimal control of light propagation through multiple-scattering media in the presence of noise

    Full text link
    We study the control of coherent light propagation through multiple-scattering media in the presence of measurement noise. In our experiments, we use a two-step optimization procedure to find the optimal incident wavefront. We conclude that the degree of optimal control of coherent light propagation through a multiple-scattering medium is only determined by the number of photoelectrons detected per single speckle spot. The prediction of our model agrees well with the experimental results. Our results offer opportunities for imaging applications through scattering media such as biological tissue in the shot noise limit

    Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal

    Get PDF
    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamond-like crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centred on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell bandstructure calculations with up to 5×5×55 \times 5 \times 5 unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centred on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 λ3\lambda^{3} (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that only donor-like resonances appear for smaller defect radius, whereas no acceptor-like resonances appear for greater defect radius. From a 3D plot of the distribution of the electric-field energy density we conclude that peaks of energy found in sharp edges situated at the point defect, similar to how electrons collect at such features. This is different from what is observed for cavities in non-inverted woodpile structures. Since inverse woodpile crystals can be fabricated from silicon by CMOS-compatible means, we project that single cavities and even cavity arrays can be realized, for wavelength ranges compatible with telecommunication windows in the near infrared.Comment: 11 figure

    Local density of optical states in the band gap of a finite photonic crystal

    Get PDF
    We study the local density of states (LDOS) in a finite photonic crystal, in particular in the frequency range of the band gap. We propose a new point of view on the band gap, which we consider to be the result of vacuum fluctuations in free space that tunnel in the forbidden range in the crystal. As a result, we arrive at a model for the LDOS that is in two major items modified compared to the well-known expression for infinite crystals. Firstly, we modify the Dirac delta functions to become Lorentzians with a width set by the crystal size. Secondly, building on characterization of the fields versus frequency and position we calculated the fields in the band gap. We start from the fields at the band edges, interpolated in space and position, and incorporating the exponential damping in the band gap. We compare our proposed model to exact calculations in one dimension using the transfer matrix method and find very good agreement. Notably, we find that in finite crystals, the LDOS depends on frequency, on position, and on crystal size, in stark contrast to the well-known results for infinite crystals.Comment: 22 pages, 8 figure

    Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity

    Get PDF
    We have theoretically studied the effect of deterministic temporal control of spontaneous emission in a dynamic optical microcavity. We propose a new paradigm in light emission: we envision an ensemble of two-level emitters in an environment where the local density of optical states is modified on a time scale shorter than the decay time. A rate equation model is developed for the excited state population of two-level emitters in a time-dependent environment in the weak coupling regime in quantum electrodynamics. As a realistic experimental system, we consider emitters in a semiconductor microcavity that is switched by free-carrier excitation. We demonstrate that a short temporal increase of the radiative decay rate depletes the excited state and drastically increases the emission intensity during the switch time. The resulting time-dependent spontaneous emission shows a distribution of photon arrival times that strongly deviates from the usual exponential decay: A deterministic burst of photons is spontaneously emitted during the switch event.Comment: 12 pages, 4 figure

    Light exiting from real photonic band gap crystals is diffuse and strongly directional

    Get PDF
    Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency: due to internal diffraction, wide angular ranges of strongly reduced diffuse transmission coincide with photonic stop bands, while enhancements occur for directions outside stop gaps. We quantitatively explain the experiment with a model incorporating diffusion and band structure on equal footing. We predict that in the event of a photonic band gap, diffuse light at frequencies near band gap edges can exit only along isolated directions. Angle-resolved diffuse transmission appears to be the photonic equivalent of angle-resolved photoelectron spectroscopy

    Controlled light scattering of a single nanoparticle by wavefront shaping

    Get PDF
    Controlling light scattering by nanoparticles is fundamentally important for the understanding and the control of light inside photonic nanostructures, as well as for nanoparticle scattering itself, including Mie scattering. Here, we theoretically and numerically investigate the possibility to manipulate nanoparticle scattering through wavefront shaping that was initially developed to control scattering of light through opaque random media that consist of large numbers of scattering nanoparticles. We find that even a single nanoparticle supports multiple strongly scattering eigenchannels, which opens the opportunity to manipulate scattering with wavefront shaping previously developed for multiple scattered light through opaque random media. We find that these scattering eigenchannels are related to different resonant leaky modes of the scatterer. Moreover, we investigate the spectral correlation of these highly scattering eigenchannels, and demonstrate the coexistence of short range and long range correlations. Our work proposes a new tool to control light-matter interactions with resonant modes via wavefront shaping and constitutes a step towards exploring novel spectral correlations in the scattering of light by nano scatterers, including Mie spheres.Comment: 8 pages, 2tables, 3 figure

    Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors

    Get PDF
    This paper discusses free carrier generation by pulsed laser fields as a mechanism to switch the optical properties of semiconductor photonic crystals and bulk semiconductors on an ultrafast time scale. Requirements are set for the switching magnitude, the time-scale, the induced absorption as well as the spatial homogeneity, in particular for silicon at lambda= 1550 nm. Using a nonlinear absorption model, we calculate carrier depth profiles and define a homogeneity length l_hom. Homogeneity length contours are visualized in a plane spanned by the linear and two-photon absorption coefficients. Such a generalized homogeneity plot allows us to find optimum switching conditions at pump frequencies near v/c= 5000 cm^{-1} (lambda= 2000 nm). We discuss the effect of scattering in photonic crystals on the homogeneity. We experimentally demonstrate a 10% refractive index switch in bulk silicon within 230 fs with a lateral homogeneity of more than 30 micrometers. Our results are relevant for switching of modulators in absence of photonic crystals
    • …
    corecore